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Note 

On the Solution of the Thomas-Fermi 

Equation by Differential Quadrature 

Equations containing both partial derivatives and integrals which frequently arise 
in science and engineering are generally solved by numerical methods wherein the 
partial derivatives and integrals are replaced by their discrete analogs, such as 
Newton’s method for integrals and either finite differences or finite elements for 
derivatives. In this manner, solution of the resulting algebraic equations can be 
accomplished by well-developed, numerical techniques. Generally these methods 
require the use of a large number of discrete points to ensure stable numerical 
solutions even though the results at only a few points are of interest. In such cases the 
method of quadrature-either differential or integral-is particularly advantageous 
since stable solutions can be obtained with only a few points. In this paper the 
application of the method of differential quadrature is demonstrated by solving the 
Thomas-Fermi equation; these results are then compared with those presented b> 
Krutter [ 71. 

Since the basic concept of quadrature [ 1, 2] is to fit a polynomial to the integral or 
derivative of the function, it is subject to the limitations of the polynomial fit. Conse- 
quently, as the number of discrete sample points is increased, the accuracy of rhe 
quadrature method continues to improve, passes through a maximum and thereafter 
proceeds to diminish due to “ill-conditioning” [2,4]. 

At the ith discrete point the quadrature approximation is given by 

L ( f(+yi)} ZY t wijf(xj), i = 1, 2,..., N 
j=I 

in which L is a linear operator representing a differentiation of a function, Jfl(x), 
where x is the independent variable and xi (where i = 1, 2,..., N) are the sample points 
obtained by dividing the x-variable into N discrete values; f(xj) are the function. 
values at these points, and )ilij are the weights attached to these function values. 

To determine the weighting coefficients, lvii, Eq. (1) must be exact for all 
polynomials of degree less than or equal to (N - 1). Thus the test function is [ 1; 

fk(X) = xk- I, k = 1, 2,..., N (2, \ 

so that Eq. (1) leads to 

L(x:-l} N c wijxjky , 
j=l 

i and k = 1. 2,..., N. (3 j 
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Equation (3) represents a set of linear algebraic equations which is solved 
simultaneously for the weighting coefficients wij. Note that this set has a unique 
solution for the weighting coefficients, wij, since the matrix of elements xj”-’ compose 
a Vandermonde matrix whose inverse can be obtained analytically as described by 
Hamming [6]. The weighting coefficients, njij, obtained in this way are then used in 
Eq. (1) to express the derivative of a function at a discrete point in terms of all of the 
discrete function values. 

For example, consider the linear operator L =x d/&(x d/dx). The weighting coef- 
ficients, byij, for this operator can be obtained from Eq. (3) by replacing the term 
L{x-‘} in Eq. (3) with (k- 1) ‘xf-‘. As a result the following set of N linear 
algebraic equations is obtained: 

N 
c Wi&l = (k - I)2 X-l, 
j=l 

i and k = 1, 2 ,..., N. (4) 

Solution of Eq. (4) for a set of prescribed xi, i = 1, 2,..., N, discrete points produces 
the weighting coeffkients. For example, for the case of N= 4 and equally spaced 
discrete points in the range of 0 <x < 1 the weighting coeffkients are 0 0 0 0 

w= 213 -512 2 -l/6 

I 1 l/3 2 -7 1413 * 
(5) 

-10 81/2 -54 4712 

Weighting coefficients for other values of N can be obtained similarly. 
To generalize the quadrature approximation method for higher-order operations 

and multivariable functions consider a matrix F containing the function values at the 
sample points. Let W be the matrix containing the weighting coefficients attached to 
these function values for a given linear operator, L. Then Eq. (1) can be put into 
matrix form as 

L(F) N WF. (6) 

Higher-order approximation formulae can be obtained by iterating the linear 
transformation [l] given by Eq. (6). Thus, for an m th-order operator 

or simply [4,5] 

L”(F) E W”F 

Lm(F} v P??F 

(74 

Vb) 



SOLUTION OF THOMAS-FERMI EQUATION 345 

in which a new coefficient matrix is defined as Iv= W” whose elements can be 
obtained directly from the solutions of 

j=l 

i and k = 1, 2 ,..., IV. (8) 

Approximation formulae for mixed operators can be obtained similarly as 

where Ly, L’;...., L$ denote separate operators applied m, n,.,., p times and @,, 
w, )...) Ek are the corresponding matrices of the weighting coefficients, respectively. 
Equation (9a) can also be written as 

LYL.1 ... LP,{FJ rz i?F (9b) 

in which %= WI rvZ . . . wk. Therefore, the number of sample points for each of the 
independent variables must be selected in such a way that the sizes of the weighting 
matrices are adequate for consecutive matrix multiplications. 

By way of demonstration, the Thomas-Fermi equation as given below will be 
solved 

d’f f 3i2 
dy?=7 (10) 

subject to the boundary conditions 

f=l at x=0 

f=O at x=02. 

(1.1) 

(42) 

To avoid the uncertainty in representing infinity the semi-infinite domain can be 
converted to a finite domain by defining a new variable as 

w-here a is some arbitrary scaling factor which should be selected such that better 
resolution is achieved in the region of immediate interest. Thus Eqs. (10) through 
(12) become 

=f 3/2/[cz3 ln(l/t)]‘” 

f=O at t=O <‘5:; 

f= 1 at t= I. (16) 
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For a numerical solution via differential quadrature replacing the term on the left 
of Eq. (14) by Eq. (1) results in 

5 wijfj =fi”/[fz3 ln(l/ti)] liz, i = 2, 3 ,..., (N - 1). 
j=l 

(17) 

The boundary function values are given by Eqs. (15) and (16) which in terms of 
the first and Nth grid point become 

f, = 0, t, =o (18) 

xv= 1, t,v = 1. (19) 

Equation (17) represents a set of (N- 2) nonlinear algebraic equations which 
needs to be solved for (N- 2) unknown discrete function values fi, 
i = 2, 3 ,..., (N - l), using an appropriate iterative method such as Newton-Raphson. 

In the present study the Newton-Raphson computer program (N one dimensional) 
presented by Carnahan et al. [3] was used to generate solutions to Eq. (17). For this 
purpose, substituting the boundary conditions given by Eqs. (18) and (19) into 
Eq. (17) and rearranging, 

(N-1) 

gi = ~ “I’ijfj + W,-f~.l’/[a3 ln(l/ti)]“’ = 0, 
j=2 

i = 2, 3,...? (N - 1) (20) 

from which the elements of the Jacobian matrix are calculated as 

$f = wij - (3/2) sijft’z/[cr:3 In( l/ti)] I”‘, 
J 

i and j = 2, 3,..., (N - 1) (21) 

in which 6, is the Kronecker delta whose value is 1 when i = j but is 0 when i #j. 
Calculations have been carried out using N= 7 and N= 15 and equally spaced 

discrete points for various values of the scaling factor CI on an IBM 3081 computer 
with double precision. The solutions with N = 7 were almost identical to N = 15. The 
results obtained for N = 15, using CI values of 1.0, 0.75, 0.50, 0.25, 0.10, 0.075, and 
0.05, are presented in Fig. 1 for comparison with the numerical results published by 
Krutter [7]. Table I shows some typical numerical values obtained in the present 
study and those generated from Krutter’s results by a Hermite cubic interpolation 
method [BJ-after converting the x-variable to In x-variable-as well as the absolute 
value of the relative deviation defined by 

E = I Lfc+mse”t -f(X>Krutterl/f(X)present 1. 
As can be seen the deviation is on the order of 10e2. 

(22) 
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FIG. I. Comparison of results of this study with those of Krutter. 
ii:) This study for N= 15 and 0.05 <a < 1.0; (-) Krutter [7]. 

TABLE I 

Comparison of Results from This Study with Krutter j7] 

x 
f c-x, 

this study 

f(s) 
interpolated 

from 
Krutter 

E, absolute 
relative 

deviation 

0.0988 1 0.88465 0.88436 0.00032 
0.24116 0.76206 0.76307 0.00132 
0.48232 0.61737 0.61628 0.00177 
0.74615 0.50361 0.50364 0.00007 
0.96465 0.43680 0.43445 0.00537 
2.50552 0.19188 0.19249 0.003 19 
5.01105 0.07877 0.07855 a.00277 

10.296 19 0.0233 1 0.02307 0.01032 
19.45911 0.006 15 0.006 11 0.00709 
30.80888 0.00212 0.00216 0.01733 



348 CIVAN AND SLIEPCEVICH 

Cutter used a Runge-Kutta method for forward numerical integration from x = 0 
and backward integration from x = co (U = l/x) which required fitting of the two 
solutions near x = 30. In return for the investment in substantial computational effort, 
his method lends itself to a high degree of accuracy which can be prescribed. 

By comparison, in this study differential quadrature is applied to a transformed 
version of the Thomas-Fermi equation to obtain numerical solutions at relatively few 
discrete points. The computing time on the IBM 3081 (for double precision) was less 
than two seconds. 
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